\begin{tabbing} EOrder\{i:l\} \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=$E$:Type$_{\mbox{\scriptsize i}}$\+ \\[0ex]$\times$EqDecider($E$) \\[0ex]$\times$${\it pred?}$:($E$$\rightarrow$($E$+Unit)) \\[0ex]$\times$${\it info}$:($E$$\rightarrow$(Id$\times$Top+(IdLnk$\times$$E$)$\times$Top)) \\[0ex]$\times$EO\=rderAxioms\{i\}($E$;\+ \\[0ex]${\it pred?}$; \\[0ex]${\it info}$) \-\\[0ex]$\times$Top \- \end{tabbing}